Google scholar page

(* denotes student author)

Submitted, in review, or in revision

Marder, E.*, Gallen, S.F., Pazzaglia, F.J., in review, Late Cenozoic deformation in the Southern Front Range revealed by river profile analysis and fluvial terraces.

Gallen, S.F., Seymour, N.M., Glotzbach, C., Stockli, D.F., O’Sullivan, P., in review, Slab-mantle interactions control forearc uplift during subduction retreat.

Stokes, M.F.*, Kim, D., Gallen, S.F., Benavides, E., Keck, B.P., Wood, J., Goldberg, S.L.*, Larsen, I.J., Mollish, J.M., Simmons, J.W., Near, T.J., Perron, J.T., in revision, Erosion of heterogeneous rock drives diversification of Appalachian fishes.

Portenga, E., Clark, M.K., Niemi, N.A., Gallen, S.F., Caffee, M., in revision, Temporal variability of fault slip rates within a complex plate boundary system.

Erlanger, E.*, Wang, Y.*, Willett, S.W., Gallen, S.F., Picotti, V., in revision, Topographic asymmetry, erosional fluxes, and kinematics of the Northern Apennines.

Wilkinson, B.H. and Gallen, S.F., in revision, Orogenic erosion and late Cenozoic climate – a case for unsteady exhumation.


[35] Ott, R.F.*, Gallen, S.F., Helman, D., 2023, Erosion and weathering in carbonate regions reveal climatic and tectonic drivers of carbonate landscape evolution: Earth Surf. Dynam., v. 11, p. 241-257.

[34] Marder, E.*, and Gallen, S.F., 2023, Climate controls on the relationship between erosion rate and fluvial topography: Geology.

[33] Eidmann, J.S.*, and Gallen, S.F., 2023, New remote method to systematically extract bedrock channel width of small catchments across large spatial scales using high-resolution digital elevation models: Earth Surface Processes and Landforms. p. 1-14.

[32] Fisher, J.*, Pazzaglia, F.J., Anastasio, D., Gallen, S.F., 2022, Linear inversion of fluvial topography in the northern Apennines: comparison of base-level fall to crustal shortening: Tectonics, v. 41, p. e2022TC007379.

[31] Ott, R.F., Gallen, S.F., Granger, D.E., 2022, Cosmogenic nuclide weathering biases: Corrections and potential for denudation and weathering rate measurements: Geochronology (GChron), v. 4, p. 455-470.

[30] Dulanya, Z., Gallen, S.F., Kolawole, F., Williams, J.N., Wedmore, L.N.J., Briggs, J., Fagerend, Å., 2022, Knickpoint Morphotectonics of the Middle Shire River Basin: Implications for the Evolution of Rift Interaction Zones: Basin Research.

[29] Johnson, S.E.*, Swallom, M.L.*, Thigpen, J.R., Michael McGlue, M., Dortch, J., Gallen, S.F., Woolery, E., Yeager, K., 2022, The influence of glacial topography on fluvial efficiency in the Teton Range, Wyoming (USA): Earth and Planetary Science Letters, v. 592, p.117643.

[28] Schide, K.*, Gallen, S.F., Lupker, M., 2022, Modeling the systematics of cosmogenic nuclide signals in fluvial sediments following extreme events: Earth Surface Processes and Landforms.

[27] Huang, M.-H., Morell, K., Duvall, A., Gallen, S. F., and Hilley, G. E., 2022, Exploring subduction zone geohazards on land and at sea, Eos, 103,

[26] Wegmann, K.W. and Gallen, S.F., 2022, Tectonic Geomorphology above Mediterranean Subduction Zones. In Schroder, J. (Editor in Chief), Owen, L.A. (Ed.), Treatise on Geomorphology. Elsevier, Amsterdam, vol. 5, Tectonic Geomorphology.

[25] Spencer, B. M.*, Thigpen, J.R., Gallen, S.F., Dortch, J.M., Hodges, K.V., Law, R.D., Mako, C.A.*, 2021, An Evaluation of Erosional-Geodynamic Thresholds for Rapid Orogenic Denudation: JGR-Solid Earth, 126, e2021JB022353.

[24] Thigpen, J.R., Brown, S.J., Helfrich, A.L., Hoar, R., McGlue, M.M, Woolery, E.W.,  Guenther, W.R., Swallom, M.L., Dixon, S., Gallen, S.F., 2021, Removal of the Northern Paleo-Teton Range along the Yellowstone Hotspot Track: Lithosphere.

[23] Märki, L.*, Lupker, M., France-Lanord, C., Lavé, J., Gallen, S.F., Gajurel, A.P., Haghipour, N., Leuenberger-West, F., Eglinton T., 2021, An unshakable carbon budget for the Himalaya: Nature Geoscience, v. 14, p. 745-750.

[22] Bruni, E.T.*, Ott, R.*, Picotti, V., Haghipour, N., Wegmann, K.W., Gallen, S.F., 2021, Stochastic alluvial fan and terrace formation triggered by a high-magnitude Holocene landslide in the Holocene at Klados, Crete: Earth Surface Dynamics, v. 9, p. 771-793.

[21] Pavano, F. and Gallen, S.F., 2021, A Geomorphic Examination of the Calabrian Forearc Translation: Tectonics, v. 40, p. e2020TC006692.

[20] Ott, R.*, Wegmann, K.W., Gallen, S.F., Pazzagila, F.J., Brandon, M., Ueda, K., Fassoulas, C., 2021, Reassessing Eastern Mediterranean tectonics and earthquake hazards from the AD 365 earthquake: AGU Advances, v. 2, p. e2020AV000315.

[19] Gallen, S.F. and Fernández-Blanco, D., 2021, A New Data-driven Bayesian Inversion of Fluvial Topography Clarifies the Tectonic History of the Corinth Rift and Reveals a Channel Steepness Threshold: JGR-Earth Surface, v. 126, p. e2020JF005651.;

[18] Huber, M.L.*, Lupker, M., Gallen, S.F., Christl, M., Gajurel, A.P., 2020, Timing of exotic, far-travelled boulder emplacement and paleo-outburst flooding in the central Himalaya: Earth Surface Dynamics, v. 8, p. 769-787.

[17] Märki, L.*, Lupker, M., Gajurel, A., Gies, H.*, Haghipour, N., Gallen, S.F., France-Lanord, C., Lavé, J., Eglinton, T., 2020, Molecular evidence for pervasive riverine export of soil organic matter from the Central Himalaya: Geophysical Research Letters, v. 47, p. e2020GL087403.

[16] Townsend, K.F.*, Gallen, S.F., Clark, M.K., 2020, Quantifying near-surface rock strength on a regional scale from hillslope stability models: JGR-Earth Surface, v. 125, p. e2020JF005665. https://10.1029/2020JF005665

[15] Ott, R.F.*, Gallen, S.F., Caves-Rugenstein, J., Ivy-Ochs, S., Helman, D., Fassoulas, C., Vockenhuber, C., Christl, M., Willett, S.D., 2019, Chemical versus mechanical denudation in meta-clastic and carbonate bedrock on Crete, Greece, and mechanisms for steep and high carbonate topography: JGR-Earth Surface, v. 124, p. 2943-2961.

[14] Ott, R.F.*, Gallen, S.F., Wegmann, K.W., Biswas, R.H.,  Herman, F., Willett, S.D., 2019, Pleistocene terrace formation, Quaternary rock uplift rates and geodynamics of the Hellenic Subduction Zone revealed from dating of paleoshorelines on Crete, Greece: Earth and Planetary Science Letters, v. 525.

[13] Gallen, S.F. and Thigpen, J.R., 2018, Lithologic Controls on Focused Erosion and Intraplate Earthquakes in the Eastern Tennessee Seismic Zone: Geophysical Research Letters, v. 45, p. 9569-9578.

[12] Gallen, S.F., 2018, Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains: Earth and Planetary Science Letters, v. 493, p. 150-160.

[11] Gallen, S.F. and Wegmann, K.W., 2017, River profile response to fault growth and linkage: An example from the Hellenic forearc, south-central Crete, Greece: Earth Surface Dynamics, v. 5, p. 161-186.;

[10] Roback, K.*, Clark, M. K., West, A.J., Zekkos, D., Li, G.*, Gallen, S.F., Champlain, D., and Godt, J. W., 2017, Map data of landslides triggered by the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake: U.S. Geological Survey data release.

[9] Roback, K.*, Clark, M. K., West, A.J., Zekkos, D., Li, G.*, Gallen, S. F., Champlain, D., and Godt, J. W., 2017, The size, distribution, and mobility of landslides from the 2015 Mw 7.8 Gorkha earthquake, Nepal: Geomorphology, v. 301, p. 121-138.

[8] Gallen, S. F., Clark, M. K., Godt, J. W., Roback, K.*, and Niemi, N.A., 2016, Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal: Tectonophysics, v. 714-715, p. 173-187.

[7] Gallen, S. F., Pazzaglia, F. J., Wegmann, K. W., Pederson, J. L., and Gardner, T. W., 2015, The dynamic reference frame of rivers and apparent transience in incision rates: Geology, v. 43, no. 7, p. 623-626.

[6] Gallen, S. F., Clark, M. K., and Godt, J. W., 2015, Coseismic landslides reveal near-surface rock strength in a high-relief, tectonically active setting: Geology, v. 43, no. 1, p. 11-14.

[5] Gallen, S. F., and Wegmann, K. W., 2015, Exploring the origins of modern topographic relief in the southern Appalachians: An excursion through the transient landscape of the Cullasaja River basin, North Carolina: Field Guides, v. 39, p. 145-167.

[4] Gallen, S. F., Wegmann, K. W., Bohnenstiehl, D. R., Pazzaglia, F. J., Brandon, M. T., and Fassoulas, C., 2014, Active simultaneous uplift and margin-normal extension in a forearc high, Crete, Greece: Earth and Planetary Science Letters, v. 398, p. 11-24.

[3] Runnels, C., DiGregorio, C., Wegmann, K. W., Gallen, S. F., Panagopoulou, E., and Strasser, T., 2014, Lower Palaeolithic artifacts from Plakias, Crete: implications for hominin dispersals: Journal of Eurasian Prehistory, v. 10, no. 3-4.

[2] Gallen, S. F., Wegmann, K. W., and Bohnenstiehl, D. R., 2013, Miocene rejuvenation of topographic relief in the southern Appalachians: GSA Today, v. 23, no. 2, p. 4-11.

[1] Gallen, S. F., Wegmann, K. W., Frankel, K. L., Hughes, S., Lewis, R. Q., Lyons, N., Paris, P., Ross, K., Bauer, J. B., and Witt, A. C., 2011, Hillslope response to knickpoint migration in the Southern Appalachians: implications for the evolution of post-orogenic landscapes: Earth Surface Processes and Landforms, v. 36, no. 9, p. 1254-1267.